Geometric Weil representation: local field case

نویسندگان

  • Vincent Lafforgue
  • Sergey Lysenko
چکیده

Let k be an algebraically closed field of characteristic > 2, F = k((t)) and G = Sp 2d . In this paper we propose a geometric analog of the Weil representation of the metaplectic group G̃(F ). This is a category of perverse sheaves on some stack, on which G̃(F ) acts by functors. This construction will be used in [5] (and subsequent publications) for the proof of the geometric Langlands functoriality for some dual reductive pairs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O ct 2 00 6 THE GEOMETRIC WEIL REPRESENTATION

In this paper we construct a geometric analogue of the Weil representation over a finite field. Our construction is principally invariant, not choosing any specific realization. This eliminates most of the unpleasant formulas that appear in the traditional (non-invariant) approaches, and puts in the forefront some delicate geometric phenomena which underlie this representation.

متن کامل

The Geometric Weil

In this paper we construct a geometric analogue of the Weil representation over a finite field. Our construction is principally invariant, not choosing any specific realization. This eliminates most of the unpleasant formulas that appear in the traditional (non-invariant) approaches, and puts in the forefront some delicate geometric phenomena which underlie this representation.

متن کامل

Moduli of metaplectic bundles on curves and Theta-sheaves

Historically θ-series have been one of the major methods of constructing automorphic forms. A representation-theoretic appoach to the theory of θ-series, as discoved by A. Weil [18] and extended by R. Howe [12], is based on the oscillator representation of the metaplectic group (cf. [17] for a recent survey). In this paper we propose a geometric interpretation this representation (in the nonram...

متن کامل

On the Ε-factors of Weil-deligne Representations

An explicit expression for the ε-factor εK((V,N),ψ,dμ) of a representation (V,N) of the Weil-Deligne group WDK of a local field K is given in terms of the nonabelian local class field theory of K.

متن کامل

Realizing the Local Weil Representation over a Number Field

Our main result is that the Weil representation of the symplectic group Sp(2n, F ), where F is a non-archimedian local field of residue characteristic 6= 2, can be realized over a number field K. We take an infinite-dimensional complex vector space V such that the Weil representation is given by ρ : Sp(2n, F ) → PGL(V) and we find a K-subspace V0 of V such that ρ(g)(V0) = V0 for all g ∈ Sp(2n, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008