Geometric Weil representation: local field case
نویسندگان
چکیده
Let k be an algebraically closed field of characteristic > 2, F = k((t)) and G = Sp 2d . In this paper we propose a geometric analog of the Weil representation of the metaplectic group G̃(F ). This is a category of perverse sheaves on some stack, on which G̃(F ) acts by functors. This construction will be used in [5] (and subsequent publications) for the proof of the geometric Langlands functoriality for some dual reductive pairs.
منابع مشابه
O ct 2 00 6 THE GEOMETRIC WEIL REPRESENTATION
In this paper we construct a geometric analogue of the Weil representation over a finite field. Our construction is principally invariant, not choosing any specific realization. This eliminates most of the unpleasant formulas that appear in the traditional (non-invariant) approaches, and puts in the forefront some delicate geometric phenomena which underlie this representation.
متن کاملThe Geometric Weil
In this paper we construct a geometric analogue of the Weil representation over a finite field. Our construction is principally invariant, not choosing any specific realization. This eliminates most of the unpleasant formulas that appear in the traditional (non-invariant) approaches, and puts in the forefront some delicate geometric phenomena which underlie this representation.
متن کاملModuli of metaplectic bundles on curves and Theta-sheaves
Historically θ-series have been one of the major methods of constructing automorphic forms. A representation-theoretic appoach to the theory of θ-series, as discoved by A. Weil [18] and extended by R. Howe [12], is based on the oscillator representation of the metaplectic group (cf. [17] for a recent survey). In this paper we propose a geometric interpretation this representation (in the nonram...
متن کاملOn the Ε-factors of Weil-deligne Representations
An explicit expression for the ε-factor εK((V,N),ψ,dμ) of a representation (V,N) of the Weil-Deligne group WDK of a local field K is given in terms of the nonabelian local class field theory of K.
متن کاملRealizing the Local Weil Representation over a Number Field
Our main result is that the Weil representation of the symplectic group Sp(2n, F ), where F is a non-archimedian local field of residue characteristic 6= 2, can be realized over a number field K. We take an infinite-dimensional complex vector space V such that the Weil representation is given by ρ : Sp(2n, F ) → PGL(V) and we find a K-subspace V0 of V such that ρ(g)(V0) = V0 for all g ∈ Sp(2n, ...
متن کامل